各领域知识的集合
数据集合必须根据具体的机器或工艺加以解释和评估,因此“特征”工程需要全面的应用知识。无论是数据科学家的专业知识,还是机械工程师或机器操作人员的应用知识,对于找出实际解决方案至关重要。只有应用专家才能评估一个数据异常是否代表了机器故障,在应用专家的帮助下,数据科学家才能建立准确识别正常运行和异常的算法。
目前,人工智能模型已经应用于许多领域,例如包装机、填充技术、材料处理以及机器人技术。魏德米勒基于这些数据模型向用户提供适合的定制化软件,帮助用户持续监测设备运行情况、做出预测,并将数据和分析结果可视化呈现。UI专家设计定制的用户界面,以便每个用户都能获得与其应用领域相匹配的解决方案。
对于设备历史数据中未包括的异常或故障,人工智能模型在运行之初是无法描述和预测的。因此,用户可以通过更新学习数据、扩展软件模块来不断完善工业分析模块。当然,魏德米勒数据科学家会按用户所需提供支持帮助。